
1

PYTHON SUMMARY (as of 4-21-2011)

- begins with the # symbol

- # can be at the start of a line (and thus the whole line a comment line)

- or # can be within a line (and thus the comment is from # to the end of the line)

- comments used at the start of a program to describe it to the reader of the program

- also used within the program to make the major sections

- can be used within a function to describe what it does and how it should be called

- EXAMPLES:

 # this is a complete comment line

 balance = 1000 # init account balance to $1,000

Numeric Literals

 Integers

 - no commas allowed

 - must not contain a decimal point

 - no limit in the size of integers

 - EXAMPLE: 1024

 Floating Point Values

 - no commas allowed

 - must contain a decimal point

 - limit to the range and precision

 - EXAMPLES: 1204.0 1204.42

String Literals

 - can use single or double quotes

 - can contain any characters (digits, letters, special symbols)

 - can contain single quotes if surrounded by double quotes (and vice versa)

 - string operators: + (to concatenate two strings together), len(str) to get length of string

 - accessing individual characters in a string using the same indexing as for lists

 - EXAMPLES: ‘Hello’ “Hello” “Let’s Begin” “4th quarter profits” “** Congratulations **”

 ‘Hello’ + name (concatenates the two, where name contains a string)

 first_initial = first_name[0] # gets the first letter of the name in first_name

Boolean (Logical) Literal Values
 - only two possible values: True False

 - look like variables names, but are literal values

Literal Values

Comment Statements

2

 - names that the programmer used for variable and function names

 - must not begin with a digit, but can contain digits

 - can also contain the special underscore (_) character

 - can be essentially any length

 - EXAMPLES: n n1 num1 yearly_sales total_sales_2011

- use the = symbol for assignment (== is for comparison, not assignment)

- can assign a variable to a single value, or to an expression (that evaluates to a single value)

- the first time that a variables is assigned a value it is defined (created)

- EXAMPLES: n = 10 n = k * 12 n = input(‘Enter your age:’)

Arithmetic Operators

+ (addition), - (negation, subtraction), * (multiplication), / (division), % (modulus)

 - the / operator performs integer division is both operands are integers

 - if at least one of the operators is a float, then the / operator performs real division

 - the modulus (%) operator:

 0 % 10  0 1 % 10  1, …. , 9 % 10  9,

 10 % 10  0, 11 % 10  1, …., 19 % 10  9, …

 - EXAMPLE: 2024 / 100  2024 % 100  24 (a way to split a number into two parts)

Relational Operators

 - < (less than), > (greater than), <= (less than or equal to), >= (greater than or equal to),

 != (not equal to), == (equal to)

 - EXAMPLES: 5 < 10  True 10 <= 5  False 10 != 5  True 10 == 10  True

Boolean Operators

 - x and y (both x and y must be true for this expression to be True)

 - x or y (at least one of x and y must be true for this expression to be True)

 - not x (this is True if x is False)

 - EXAMPLES: 5 < 10 and 6 < 12  True 5 < 10 or 8 < 4  True not 5 > 10  True

Variable Assignment

Operators

Identifiers

3

- all expressions evaluate to a value

- can use parentheses to indicate how an expression is to be evaluated,

 otherwise the rules of operator precedence apply (* and / before + and -)

- thus, they can be used wherever the type of value that they evaluate to can be used

Arithmetic Expressions

 - any combination of numeric values and arithmetic operators

 - EXAMPLES: num * 20 num1 * (20 / num2) – num3

Relational Expressions

 - any combination of ordered values and relational operators

 - EXAMPLES: 10 < 20 ‘a’ < ‘z’ 10 == 20

Boolean Expressions

 - any combination of Boolean values/Boolean and relational operators

 - EXAMPLES: 1 < 10 and 4 > 2

 married and has_child (where variables married an has_child are Boolean variables)

Input

 - use input() for reading numeric values from user

 - use raw_input() for reading string values from user (such as a name)

 - EXAMPLES:

 age = input(‘Enter your age:’)

 name = input(‘Enter your name:’)

Output

 print 'Hello'

 - prints ‘Hello’ and moves screen cursor to next line

 print ‘Hello’,

 - prints ‘Hello’ and leaves cursor on the same screen line

 - thus, next print output will begin where previous one left off on screen

 print ‘The result is’, result

 - can print a combination of literal values and variables

Expressions

Input/Output

4

Selection

 if statement without else
 if age < 14:
 print "YOU'RE JUST A KID"

 if statement with else
 if age < 14:

 print "YOU'RE JUST A KID"

 else:

 if age < 22:

 print "We're about the same age"

 else:

 print "You're older than me"

 Repetition (Iteration – while loops and for loops)

 num = 1
 sum = 0
 while num <= 100:
 sum = sum + num
 num = num + 1

sum = 0

for num in range(1,101):

 sum = sum + num

 num = input(‘Enter a number between 1-10, inclusive’)
 while (num < 1) or (num > 10):
 num = input(‘Enter a number between 1-10, inclusive’)

 num = input(‘Enter a number between 1-10, inclusive’)
 while not ((1 <= num) and (num <= 10)):
 num = input(‘Enter a number between 1-10, inclusive’)

Indefinite loop
Logically equivalent using
different Boolean expressions

“Catch all” (optional)

Control

Definite loop

Adds up first 100 integers

Same as repeat(100) in Scratch

if statement with chained elif

if numCredits >= 90:

 print ‘Senior’

elif numCredits >= 60:

 print ‘Junior’

elif numCredits >= 30:

 print ‘Sophomore’

else

 print ‘Freshman’ “Catch all” (optional)

Definite loop

Logically equivalent to above using a

for loop instead of a while loop

5

Simple Lists (list of literal values)

 [] - empty list

 [1,2,3] - list of length three

 nums = [1,2,3] - assigning a list to a variable

 nums[0] - accesses the first item of list nums (1)

 nums[1] - accesses the second item of list nums (2)

 len(nums) - gives the length of list nums (3)

Natural Use of for Loop with Lists

sum = 0

numItems = len(nums)

for k in range(0, numItems):
 sum = sum + nums[k]

Nested Lists (list of lists)

 lst = [[1,2,3], [4,5,6], [7,8,9]]

 lst[0]  [1,2,3] lst[1]  [4,5,6] lst[2]  [7,8,9]

 lst[0][0]  1 lst[0][1]  2 lst[0][2]  3
 lst[1][0]  4 lst[1][1]  5 etc.

 sum = 0

 for k in range (0, len(lst)):

 for j in range(0,3):

 sum = sum + lst[k][j]

 for k in range(0, len(lst)):

 for j in range(0,3):

 print lst[k][j], # comma used to keep cursor on same line

 print # “empty print” to move cursor to next line

Lists

Adds up all the numbers in list

nums, where nums can be a list of

any length

Adds up all the numbers in lst

Prints items in three rows,

three numbers per row

6

 - variables assigned within a function are called “local variables”

 - local variables only exists for the function that they are part of

 - functions cannot access the local variables of other functions

 Value-Returning Functions

 - can be given 0 or more parameters

 - must contain a return statement

 - can be called from whereever the return value can be appropriately used

 - called as part of an expression, an assignment statement, a print statement, etc.

 # example of a value-returning function with parameters

 def avg(n1, n2, n3): def avg(n1, n2, n3):

 result = (n1 + n2 + n3) / 3.0 return (n1 + n2 + n3) / 3.0

 return result

 # example of a value-returning function with no parameters

 def getInput():
 selection = input(‘Enter B, D, W, or Q to quit: ’)
 while selection != ‘B’ and selection != ‘D’ and selection != ‘W’:
 print ‘* Invalid Response – Please Reenter *’

 return selection

Non Value-Returning Functions
 - can be given 0 or more parameters
 - do NOT contain a return statement
 - are NOT called as part of an expression, return statement or print statement
 since they do not return a value
 - cause some other “side effect” such as printing to the screen

 # example of a non-value returning function with no parameters

 def welcomeScreen()

 print ‘Welcome to the ATM simulation program’

 print ‘--‘

 print ‘ This program has the following options:’

 print ‘ B - to check account balance’

 print ‘ D - to make a deposit’

 print ‘W- to make a withdrawal’

Functions

7

 # example of a non-value returning function with parameters

 def welcomeScreen(name)

 print ‘Welcome’, name, ‘ to the ATM simulation program’

 print ‘--‘

 print ‘ This program has the following options:’

 print ‘ B - to check account balance’

 print ‘ D - to make a deposit’

 print ‘W- to make a withdrawal’

 # example of a value returning function passed a list as a parameter

 def total(lst)

 sum = 0 # local variable

 for k in range(0, len(lst)):

 sum = sum + lst[k]

 return sum

 # example main program using above functions

 list1 = [10,45,30,67,52,30,19]

 sum_list1 = total(list1)

 print ‘The total of all items in list1 is:’, sum_list1

 OR

 print ‘The total of all items in list1 is:’, total(list1)

 list2 = [[20,42,53,76,32,42,19], [23,53,48,56,34,32], [23,4,43]]

 sum_list2 = total(list2[0]) + total(list2[1]) + total(list2[2])

 print ‘The total of all items in list2 is:’, sum_list2

 OR

 print ‘The total of all items in list2 is:’, total(list2*0+) + total(list2*1+) + total(list2*2+)

