PYTHON SUMMARY (as of 4-21-2011)

Comment Statements

- begins with the # symbol
- # can be at the start of a line (and thus the whole line a comment line)
- or # can be within a line (and thus the comment is from # to the end of the line)
- comments used at the start of a program to describe it to the reader of the program
- also used within the program to make the major sections
- can be used within a function to describe what it does and how it should be called
- EXAMPLES:
this is a complete comment line
balance = 1000 # init account balance to $1,000

Literal Values

Numeric Literals
Integers

- no commas allowed

- must not contain a decimal point
- no limit in the size of integers

- EXAMPLE: 1024

Floating Point Values

- no commas allowed

- must contain a decimal point

- limit to the range and precision
- EXAMPLES: 1204.0 1204.42

String Literals

- can use single or double quotes

- can contain any characters (digits, letters, special symbols)

- can contain single quotes if surrounded by double quotes (and vice versa)

- string operators: + (to concatenate two strings together), len(str) to get length of string

- accessing individual characters in a string using the same indexing as for lists

- EXAMPLES: ‘Hello’ “Hello” “Let’s Begin” “4th quarter profits” “** Congratulations **”
‘Hello’ + name (concatenates the two, where name contains a string)
first_initial = first_name[0] # gets the first letter of the name in first_name

Boolean (Logical) Literal Values
- only two possible values: True False

- look like variables names, but are literal values

Identifiers

- names that the programmer used for variable and function names
- must not begin with a digit, but can contain digits

- can also contain the special underscore (_) character

- can be essentially any length

-EXAMPLES: n nl1 numl vyearly sales total sales 2011

Variable Assignment

- use the = symbol for assignment (== is for comparison, not assignment)

- can assign a variable to a single value, or to an expression (that evaluates to a single value)
- the first time that a variables is assigned a value it is defined (created)

-EXAMPLES: n=10 n=k*12 n=input(‘Enter your age:’)

Operators

Arithmetic Operators

+ (addition), - (negation, subtraction), * (multiplication), / (division), % (modulus)

- the / operator performs integer division is both operands are integers
- if at least one of the operators is a float, then the / operator performs real division

- the modulus (%) operator:

0%10 > 0 1%10->1,...,9%10->9,
10%10->0, 11%10->1,..,19%10-> 9, ..

- EXAMPLE: 2024 /100> 2024% 100> 24 (away to split a number into two parts)

Relational Operators

- < (less than), > (greater than), <= (less than or equal to), >= (greater than or equal to),
I= (not equal to), == (equal to)

- EXAMPLES: 5<10-> True 10<=5 > False 10!=5-> True 10==10-> True

Boolean Operators
-xandy (both x andy must be true for this expression to be True)
-xory (atleast one of x and y must be true for this expression to be True)
- not x (thisis True if x is False)
-EXAMPLES: 5<10and6<12 > True 5<100r8<4-> True not5>10-> True

Expressions

- all expressions evaluate to a value
- can use parentheses to indicate how an expression is to be evaluated,
otherwise the rules of operator precedence apply (* and / before + and -)
- thus, they can be used wherever the type of value that they evaluate to can be used

Arithmetic Expressions

- any combination of numeric values and arithmetic operators
- EXAMPLES: num *20 numil * (20 / num2) — num3

Relational Expressions

- any combination of ordered values and relational operators
- EXAMPLES: 10<20 ‘@’ < ‘Z 10==20

Boolean Expressions

- any combination of Boolean values/Boolean and relational operators
- EXAMPLES: 1<10and 4>2
married and has_child (where variables married an has_child are Boolean variables)

Input/Output

Input
- use input() for reading numeric values from user
- use raw_input() for reading string values from user (such as a name)

- EXAMPLES:
age = input(‘Enter your age:’)
name = input(‘Enter your name:’)
Output
print 'Hello'

- prints ‘Hello’ and moves screen cursor to next line

print ‘Hello’,
- prints ‘Hello’ and leaves cursor on the same screen line
- thus, next print output will begin where previous one left off on screen

print ‘The result is’, result
- can print a combination of literal values and variables

Control

Selection

if statement without else

if age < 14:

print "YOU'RE JUST A KID"

if statement with else
if age < 14:

print "YOU'RE JUST A KID"

else:

if age < 22:

if statement with chained elif

if numCredits >= 90:
print ‘Senior’

elif numCredits >= 60:
print ‘Junior’

elif numCredits >= 30:
print ‘Sophomore’

else

print ‘Freshman’ >~ “Catch all” (optional)

print "We're about the same age"

else:

print "You're older than me"

“Catch all” (optional)

Repetition (Iteration — while loops and for loops)

num=1

sum=0

while num <= 100:
sum = sum + num
num=num+1

sum =0

for num in range(1,101):

sum =sum + num

~N

Definite loop
Adds up first 100 integers
Same as repeat(100) in Scratch

Definite loop
Logically equivalent to above using a
for loop instead of a while loop

num = input(‘Enter a number between 1-10, inclusive’) N\
while (num <1) or (num > 10):
num = input(‘Enter a number between 1-10, inclusive’)

num = input(‘Enter a number between 1-10, inclusive’)

S

while not ((1 <= num) and (hum <= 10)):
num = input(‘Enter a number between 1-10, inclusive’) -

Indefinite loop
Logically equivalent using
different Boolean expressions

Lists

Simple Lists (list of literal values)
(1 - empty list
[1,2,3] - list of length three

nums = [1,2,3] - assigning a list to a variable

nums|[0] - accesses the first item of list nums (1)
nums(1] - accesses the second item of list nums (2)
len(nums) - gives the length of list nums (3)

Natural Use of for Loop with Lists

sum=0

numltems = len(nums) Adds up all the numbers in list
nums, where nums can be a list of

for k in range(0, numltems): any length

sum = sum + nums[k]

Nested Lists (list of lists)

Ist=1[11,2,3], [4,5,6],[7,8,9]]
Ist[0] = [1,2,3] Ist[1] = [4,5,6] Ist[2] = [7,8,9]

Ist[0][0] = 1 Ist[0][1] = 2 Ist[0][2] = 3
Ist[1][0] = 4 Ist[1][1] = 5 etc.

sum=0
for k in range (0, len(lst)): Adds up all the numbers in Ist
forjin range(0,3):
sum = sum + Ist[k][j]

for k in range(0, len(Ist)):
Prints items in three rows,

forjin range(0,3):
) 8e(0.3) three numbers per row

print Ist[k][jl, # comma used to keep cursor on same line
print # “empty print” to move cursor to next line

Functions

- variables assigned within a function are called “local variables”
- local variables only exists for the function that they are part of
- functions cannot access the local variables of other functions

Value-Returning Functions
- can be given 0 or more parameters
- must contain a return statement
- can be called from whereever the return value can be appropriately used
- called as part of an expression, an assignment statement, a print statement, etc.

example of a value-returning function with parameters

def avg(nl, n2, n3): def avg(nl, n2, n3):
result=(n1+n2+n3)/3.0 return (n1 +n2 +n3)/3.0
return result

example of a value-returning function with no parameters

def getinput():
selection = input(‘Enter B, D, W, or Q to quit: ’)
while selection != ‘B’ and selection != ‘D’ and selection != ‘W’:
print ‘* Invalid Response — Please Reenter *’

return selection

Non Value-Returning Functions
- can be given 0 or more parameters
- do NOT contain a return statement
- are NOT called as part of an expression, return statement or print statement
since they do not return a value
- cause some other “side effect” such as printing to the screen

example of a non-value returning function with no parameters
def welcomeScreen()
print ‘Welcome to the ATM simulation program’

‘{

print

print ‘ This program has the following options:’
print ‘B - to check account balance’

print ‘D - to make a deposit’

print ‘W- to make a withdrawal’

example of a non-value returning function with parameters

OR

OR

def welcomeScreen(name)
print ‘Welcome’, name, ‘ to the ATM simulation program’

‘

print ‘

print ‘ This program has the following options:’
print ‘B - to check account balance’

print ‘D - to make a deposit’

print ‘W- to make a withdrawal’

example of a value returning function passed a list as a parameter
def total(lst)
sum =0 # local variable
for k in range(0, len(Ist)):
sum =sum + Ist[k]

return sum

example main program using above functions
listl = [10,45,30,67,52,30,19]

sum_list1 = total(list1)

print ‘The total of all items in list1 is:’, sum_list1

print ‘The total of all items in list1 is:’, total(list1)

list2 = [[20,42,53,76,32,42,19], [23,53,48,56,34,32], [23,4,43]]

sum_list2 = total(list2[0]) + total(list2[1]) + total(list2[2])
print ‘The total of all items in list2 is:’, sum_list2

print ‘The total of all items in list2 is:’, total(list2[0]) + total(list2[1]) + total(list2[2])

